当前位置:首页 > 教学范文 > 教学设计

乘法分配律教学设计

时间:2024-08-12 12:05:32
乘法分配律教学设计(15篇)

乘法分配律教学设计(15篇)

作为一名为他人授业解惑的教育工作者,就难以避免地要准备教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。写教学设计需要注意哪些格式呢?以下是小编整理的乘法分配律教学设计,欢迎大家分享。

乘法分配律教学设计1

教学内容:青岛版四年级下册第24-25页红点内容 信息窗2 第1课时

教学目标:

1.通过有步骤的观察、猜测、比较、概括,引导学生自己建构乘法分配律的全过程。

2.帮助学生理解乘法分配律的意义,掌握其数的特点和结构形式,并学会用字母表示乘法分配律。从而培养学生的分析观察能力,提高学生的抽象思维能力。

3.在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。

教学重点:理解和掌握乘法分配律的推导过程。

教学难点:理解和掌握乘法分配律的推导过程。

教学准备:课件,卡片(课前发给学生)

教学过程:

一、拟定自学提纲

自主预习

1. 创设情境:(多媒体出示24页情境图)

教师引导:同学们,请认真观察情境图,你能得到哪些数学信息?能提出什么数学问题?

(学生可能提出 济青高速公路全长大约多少千米?

相遇时大巴车比中巴车多行多少千米?)

(教师把这两个问题板书在黑板上。)

教师引导:这节课,我们将通过研究一辆大巴车和一辆中巴车在济青高速上相遇的问题继续探索乘法运算的规律。

2. 出示学习目标:这节课的学习目标是:(多媒体出示)

(1)运用观察、猜想、验证、归纳的数学方法,通过自主解决上述问题,探索发现乘法分配律,会用自己的话表述,会用字母表示。

(2)乐于把自己学习的收获、困惑、体会与大家分享,乐于与同学合作。

教师引导:有信心达到这两个目标吗?(有!)

老师的指导会对你们的学习有很大的帮助,请看自学指导:

3. 出示自学指导(认真看课本第24页到25页第二个红点前的内容,重点看图上同学的对话。思考:

(1)如何求济青公路的全长,有几种解法,如何列式计算。

(2)比较两种解法的计算过程和结果,你有什么猜想?再举几个例子来验证一下,你能得出什么结论?

(3)什么叫乘法分配律,如何用字母表示?

5分钟后汇报自学成果,看谁能独立用多种方法解答黑板上的三个问题,并能发现乘法运算的规律。)

4. 学生按自学指导自学,教师巡视,关注学困生。

二、汇报交流 评价质疑

调查学情:看完的同学请举手!看会的请放下。

1.小组交流:

学习中你有哪些收获、困惑和体会,请在小组内交流一下。

2.班内汇报:

师指小组选代表按顺序汇报自学指导中的思考题,其余同学随机质疑、补充。

课堂生成预设:

(1)济青高速公路全长大约多少千米?

教师追问:第一种算法是先算什么,再算什么?第二种算法呢?

预设一:先算两辆车1小时共行多少千米,再算两辆车2小时共行多少千米,就是济青高速公路的全长;

预设二:先算大巴车2小时共行多少千米、中巴车2小时共行多少千米,再算两辆车2时共行多少千米。就是济青高速公路的全长。)

(2)相遇时大巴车比中巴车多行多少千米?

(110-90)×2 110×2-90×2

=20×2 =220-180

=40(千米) =40(千米)

教师追问:你能说说两种算式的意思么?

预设一:第一种算法是先求大巴车1小时比中巴车多行的路程,再求大巴车2小时比中巴车多行的路程;

预设二:第二种算法是先分别求出大巴车和中巴车2小时行的路程,再求大巴车比中巴车多行的路程。

(3)观察、比较两种算法的过程和结果,你有什么发现?

预设一:第一种算法是先加(或减)再乘;

预设二:第二种算法是先分别相乘再加(或减),但计算结果相同。

(4)据此,你有什么猜想?

预设:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

(5)怎样验证你的猜想呢?

(师用线段图帮助学生理清思路)

学生观察、汇报。重点引导学生从计算结果,算式的结构和计算方法上比较。

通过观察,有何发现?引导学生回答:

举例验证:(125+12)×8 = 125×8+12×8

(40-4)×25 = 40×25-4×25

(8+16)×125 = 8×125+16×125

(80-8)×125 = 80×125-8×125

…… ……

(6)通过验证,你能得出什么结论?

结论:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

教师总结:这是一个伟大的发现!这个规律叫做乘法分配律。

(板书课题)你会用字母表示这个规律吗?

(用字母表示:(a± b) c=ac±bc)

三、抽象概括 总结提升

1.通过以上研究,你得到了什么结论?

课堂预设:

预设一:两个数的和乘一个数,可以把它们分别乘这个数,再把所得的积相加,结果不变。

预设二:两个数的差乘一个数,可以把它们分别乘这个数,再把所得的积相减,结果不变。

预设三:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

预设四:这个规律叫乘法分配律,可以用字母表示为:

(a± b) c=ac±bc

2.如果是多个数的和(或差)乘一个数,这个规律还存在吗?你怎样验证你的猜想?

课堂预设:

举例验证:(2+3+5)×4=2×4+3×4+5×4

(1000+100+10)×3=1000×3+100×3+10×3

…… ……

教师总结:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。

设计意图:将乘法分配律适当拓展

3.在记忆这个规律时,应该注意什么?

【设计意图】帮助学生理解、记忆乘法分配律,避免常犯的错误。

课堂预设:

预设一:括号里的每一个数都要乘括号外的数。 ……此处隐藏25061个字……p>(2)9×37+9×13(2)9×(37+13)

在A组同学不服气,说B组容易时,教师激趣:是吗?B组容易?那我们再来一次好吗?

A组B组

(1)(10+4)×25(1)10×25+4×25(2)(4+8)×125(2)4×125+8×125

谈话:为什么这次A组又输了?观察观察,可不要冤枉了老师。你们有什么发现?(学生讨论交流)

小结:这真是一个了不起的发现。一切数学知识来源于发现问题,而一个伟大的数学家有所成就在于他发现问题。看看今天我们的同学们发现一个怎样的数学知识。有信心吗?给自己鼓鼓掌!

谈话:同学们,我们学校有5个同学就要去参加“海安县首届批发王杯少儿才艺大赛”了,声乐兴趣小组的于老师准备为他们每人买一套一样的漂亮服装,我们一起去看看好吗?

【评析:玩是学生的天性。心理学研究表明:促进人素质、个性发展的最主要途径是实践活动,而“玩”正是儿童所特有的实践活动形式。如何让学生玩出效果来?教师提供了一个“竞赛”的机会,让学生在“竞赛”中发现竞赛的不公平,近而寻找不公平的原因,激发了学生学习的兴趣。在探究原因的过程中,学生潜移默化地感知了同组算式之间的关系。】

二、创设活动情境,在合作中探究

1.交流算法,初步感知

(课件出示例题情境图)

谈话:从图中你了解到了哪些信息?于老师可以怎样搭配服装?

(1)学生的选择方法1:买5件夹克衫和5条裤子

一共要付多少元呢?你能解决这样的问题吗?学生独立列式计算。(教师巡视,安排不同方法解答的学生板演,并了解全班学生采用的什么方法)

反馈:你是怎样解决这一问题的?为什么这样列式?

组织学生交流自己的解题方法,再分别说说两个算式的意义。(课件显示)

谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?

学生在自己的本子上写,教师巡视。

[教师板书:(65+45)×5=65×5+45×5],让学生读一读。

(2)学生的选择方法2:买5件短袖衫和5条裤子

提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?

根据学生回答,列出算式:32×5+45×5和(32+45)×5

再问:这两个算式有什么关系?可以用什么符号把它们连接起来?

[教师板书:(32+45)×5=32×5+45×5]

启发:比较这两个等式,它们有什么相同的地方?

2.深入体验,丰富感知。

现在请每个同学拿出信封中的练习纸,想一想在这几组算式中,哪些可以用等号连起来(在□里画=号),哪些不能?当然你可以先计算每组中两个算式的得数,也可以仔细观察。

在得数相同的两个算式中间的□里画“=”

(1)(28+16)×7□28×7+16×7

(2)15×39+45×39□(15+45)×39

(3)74×(20+1)□74×20+74

(4)40×50+50×90□40×(50+90)

(5)(125×50)×8□125×8+50×8

分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?有办法使他们变得相等吗?(课件显示修改过程)

谈话:你能写出几组类似这样的`式子吗?大家动手写一写。(提醒学生认真算一算你写出的等式两边是不是相等)

学生举例并组织交流。(比较这些等式是否具有相同的特点)

3.反思学习,揭示规律

提问:像这样的等式,写得完吗?像这样等号左边和右边的式子都会相等,这是不是巧合?还是有什么规律存在?

谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

如果用a、b、c代表上面等式中的数,这个规律怎样表示?[板书:(a+b)×c=a×c+b×c板书好适当图例解释意思]

小结:同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)

(课件显示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变,这叫做乘法分配律。)

对于乘法分配律,用字母来表示,感觉怎样——简洁、明了,这就是数学的美!

【评析:深层次的探究,教师不急于点明规律,维持学生的好奇心,通过学生讨论,使学生积极主动地去发现总结规律,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识,让学生体会到成功的快乐。】

三、巩固内化知识,在实践中运用

谈话:让我们带着自己发现的数学知识进入今天的“数学乐园”吧!

1.大显身手

出示“想想做做”第1题,让学生在书上填一填。

师:第2题你是怎么想的?

小结:乘法分配律可以正着用,也可以反着用。[补充板书:a×c+b×c=(a+b)×c]

2.生活应用

(“想想做做”第3题)

小结:说说两种方法的联系。

3.巧妙运用

(“想想做做”第4题)(同桌一人做一组,做在练习本上)

谈话:每组两道算式有什么联系?哪一题计算比较简便?

现在你知道上课开始时为什么B组同学算得快吗?

小结:乘法分配律可以使计算简便。

4.明辨是非

我校二年级有3个班,每个班有34人。三年级有2个班,每个班有36人。二三年级一共有多少人?

王小明这样计算:

(3+2)×(34+36)

=5×70

=350(人)

①观察一下,你赞同王小明的算法吗?为什么?

②要用乘法分配律,要有什么条件?

5.巧猜字谜

猜一猜,等号后边是三个什么字?

人×(1+2+3)=

6.大胆猜想

如果把乘法分配律中的加号改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?

学生小组交流猜想。

谈话:我们再回到课开始的那条题目上,如果于老师想知道“买5件夹克衫比5件短袖衫贵多少元?”你能帮她吗?试试看!

教师组织、引导学生总结得出:

(a-b)×c=a×c-b×c

小结:大家真了不起!让我们为自己的伟大发现热烈鼓掌吧!

【评析:例题的第三次变式,为学生的猜想提供了素材,也让本课学生的探究得到延伸,拓展了“乘法分配律”的意义。练习的设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。】

四、回忆梳理知识,在反思中总结

今天这节课,你有什么收获?

五、布置作业:“想想做做”第5题。

《乘法分配律教学设计(15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式